You are given an n x n 2D matrix representing an image.
Rotate the image by 90 degrees (clockwise).
Note:
You have to rotate the image in-place, which means you have to modify the input 2D matrix directly. DO NOTallocate another 2D matrix and do the rotation.
You have to rotate the image in-place, which means you have to modify the input 2D matrix directly. DO NOTallocate another 2D matrix and do the rotation.
Example 1:
Given input matrix = [ [1,2,3], [4,5,6], [7,8,9] ], rotate the input matrix in-place such that it becomes: [ [7,4,1], [8,5,2], [9,6,3] ]
Example 2:
Given input matrix = [ [ 5, 1, 9,11], [ 2, 4, 8,10], [13, 3, 6, 7], [15,14,12,16] ], rotate the input matrix in-place such that it becomes: [ [15,13, 2, 5], [14, 3, 4, 1], [12, 6, 8, 9], [16, 7,10,11] ]
Algorithm:
It's simply moving numbers around, and you only need to find the rules.
for N = 3, you only need to move the outside edge twice :
1 2 3 a 7 2 1 b 7 4 1
4 5 6 ==> 4 5 6 ==> 8 5 2
7 8 9 9 8 3 9 6 3
To achieve step a : Note that if we want to rotate left:
tmp = (0, 0) // Throw 1 in tmp tmp = (0, 0)
tmp = (0, 0) // Throw 1 in tmp tmp = (0, 0)
(0, 0) = (2, 0) // Replace 1 with 7 (0, 0) = (0, 2)
(2, 0) = (2, 2) // Replace 7 with 9 (0, 2) = (2, 2)
(2, 2) = (0, 2) // Replace 9 with 3 (2, 2) = (2, 0)
(0, 2) = tmp // Replace 3 with 1 (2, 0) = tmp
Same idea you can get step b :
With these coordinates mapping from step a & b, you can get something like this:
1 2 3 4 5 6 7 | for(int i=0; i < nn-1; i++) { int tmp = matrix[0][i]; matrix[0][i] = matrix[nn-1-i][0]; matrix[nn-1-i][0] = matrix[nn-1][nn-1-i]; matrix[nn-1][nn-1-i] = matrix[i][nn-1]; matrix[i][nn-1] = tmp; } |
For N=4 :
1 2 3 4 13 9 5 1 c 13 9 5 1
5 6 7 8 => 14 6 7 2 ===> 14 10 6 2
9 10 11 12 15 10 11 3 15 11 7 3
13 14 15 16 16 12 8 4 16 12 8 4
We need extra loop to move the highlighted area (Step c) :
tmp = (1, 1)
(1, 1) = (2, 1)
(2, 1) = (2, 2)
(2, 2) = (1, 2)
(1, 2) = tmp
It's not hard to figure out the final from here.
Solution:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | class Solution { public void rotate(int[][] matrix) { int nn = matrix[0].length; for(int j=0; j < nn/2; j++ ) { for(int i=j; i < nn-1-j; i++) { int tmp = matrix[j][i]; matrix[j][i] = matrix[nn-1-i][j]; matrix[nn-1-i][j] = matrix[nn-1-j][nn-1-i]; matrix[nn-1-j][nn-1-i] = matrix[i][nn-1-j]; matrix[i][nn-1-j] = tmp; } } } } |
For comparison, this is the solution for rotate left by 90 degree:
static void rotateLeft2D(int[][] matrix) { int nn = matrix[0].length; for(int j=0; j < nn/2; j++ ) { for(int i=j; i < nn-1-j; i++) { int tmp = matrix[j][i]; matrix[j][i] = matrix[i][nn-1-j]; matrix[i][nn-1-j] = matrix[nn-1-j][nn-1-i]; matrix[nn-1-j][nn-1-i] = matrix[nn-1-i][j]; matrix[nn-1-i][j] = tmp; } } }
Performance:
No comments:
Post a Comment